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Abstract: While colonoscopy is the gold standard for diagnosis and classification of 
colorectal cancer (CRC), its sensitivity and specificity are operator-dependent and are 
especially poor for small and flat lesions. Contemporary imaging modalities, such as optical 
coherence tomography (OCT) and near-infrared (NIR) fluorescence, have been investigated 
to visualize microvasculature and morphological changes for detecting early stage CRC in the 
gastrointestinal (GI) tract. In our study, we developed a multimodal endoscopic system with 
simultaneous co-registered OCT and NIR fluorescence imaging. By introducing a contrast 
agent into the vascular network, NIR fluorescence is able to highlight the cancer-suspected 
area based on significant change of tumor vascular density and morphology caused by 
angiogenesis. With the addition of co-registered OCT images to reveal subsurface tissue layer 
architecture, the suspected regions can be further investigated by the altered light scattering 
resulting from the morphological abnormality. Using this multimodal imaging system, an in 
vivo animal study was performed using a F344-ApcPircUwm rat, in which the layered 
architecture and microvasculature of the colorectal wall at different time points were 
demonstrated. The co-registered OCT and NIR fluorescence images allowed the identification 
and differentiation of normal colon, hyperplastic polyp, adenomatous polyp, and 
adenocarcinoma. This multimodal imaging strategy using a single imaging probe has 
demonstrated the enhanced capability of identification and classification of CRC compared to 
using any of these technologies alone, thus has the potential to provide a new clinical tool to 
advance gastroenterology practice. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Colorectal cancer (CRC) is the third most common type of cancer, consisting of about 10% of 
all cancer cases globally [1]. In 2012 alone, approximately 1.4 million new cases of, and 
almost 0.7 million deaths from, CRC were reported [2]. Colonoscopy (i.e., white light 
endoscopy) is the gold standard for CRC diagnostics as it provides visualization of abnormal 
tissue growth on the mucous membrane in the colon or rectum, known as colorectal polyps. 
In addition to CRC screening, physicians also utilize colonoscopy to excise small polyps, and 
biopsy larger polyps or tumors for further diagnosis, in a minimally invasive manner. 
However, several disadvantages of colonoscopy exist. While being the standard imaging 
technique, colonoscopy provides only surface morphology of the rectal wall and cannot 
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resolve the abnormal layer architecture and subsurface microvasculature which are highly 
associated with CRC. Hence, cancer staging often requires biopsy, which not only is more 
invasive and time-consuming but also has diminishing accuracy limited by the sample 
number (four and six biopsy specimens yield accuracies of 68% and 78%, respectively) [3,4]. 
The size of the polyp also affects the accuracy of CRC diagnostics. The miss rate increases 
significantly in smaller sized polyps which is estimated to be as high as 26% for small polyps 
(< 5 mm) [5]. An imaging system that provides a high sensitivity and specificity for 
differentiating all kinds of polyps is therefore necessary. 

To address the limitations of conventional colonoscopy, many endoscopic imaging 
modalities, such as endoscopic ultrasound (US), optical coherence tomography (OCT), 
Doppler OCT, photoacoustic (PA), and near-infrared (NIR) fluorescence imaging [6–20], 
have been applied in GI tract to visualize the layered architecture or subsurface vascular 
network for better CRC staging and management. Each modality has its own strengths and 
limitations. To improve the diagnostics accuracy, many groups focus on developing 
multimodality imaging systems (such as combined OCT/US, PA/US, and OCT/NIR 
fluorescence). Among them, combining OCT and NIR fluorescence allows cross-sectional 
visualization of the tissue morphology and vasculature with high spatial resolution and 
sensitivity, providing a powerful tool to monitor the hallmarks of CRC (i.e., morphological 
abnormality and angiogenesis). Furthermore, integrated OCT/NIR fluorescence imaging 
decreases the procedure cost and time as only one imaging probe is used to acquire both OCT 
and NIR fluorescence data in one session. Several multimodal OCT/NIR fluorescence 
systems [9,18,21–24] have been reported, demonstrating their capability of visualizing tissue 
morphology and molecular composition simultaneously. However, a successful clinical 
adaptation for CRC diagnostic imaging requires a combination of miniaturized endoscopic 
packing, FDA approved contrast agent, high-speed and high-resolution 3-dimensional (3D) 
imaging, and animal model validation. Currently, none of the reported systems has achieved 
all of the above prerequisites. 

In this study, we combined OCT and NIR fluorescence into one imaging system and 
packaged the imaging probe into a miniature endoscope. OCT and NIR fluorescence imaging 
were performed simultaneously with high speed and high resolution. Using an FDA approved 
contrast agent ICG, we validated the multimodal system with a diseased rat model by 
demonstrating the capability to visualize the change in vascular density and morphology 
through NIR fluorescence and study the tissue layer architecture via co-registered OCT 
images. This allowed for real-time identification of suspect lesions with microscopic detail in 
vivo, leading to better determination of GI tract disorders. Through the animal study, our 
preliminary results from a rat model demonstrated the potential of the multimodality imaging 
system for detection of CRC and differentiation of cancer stages. 

2. Methods 

2.1 Contrast agent 

Indocyanine green (ICG) is a fluorescent dye used in medical imaging as an indicator 
substance and was approved by the FDA in 1959. ICG binds 98% to plasma proteins and 
accumulates in the tumor region more than normal tissue after intravenous injection due to the 
“enhanced permeability and retention” effect caused by angiogenesis [25,26]. For this reason, 
ICG is widely used for angiogram and tumor border delineation [27,28]. Because of tumor 
vasculature is more dense and highly tortuous, the morphology and density of tumor 
vasculature can be used as biomarker for tumor detection. In this study, ICG was used to 
perform angiogram and identify the suspected tumor region based on the altered density and 
morphology of vasculature. ICG has a short half-life (~3 minutes) and is cleared from 
circulation exclusively by the liver to bile juice quickly. Therefore, the imaging will be 
performed right after the intravenous injection and finished in 3 minutes. 
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2.2 Animal model 

Male rats from the F344-ApcPircUwm strain were used for this study. The rat model carries a 
knockout allele in the gatekeeper gene adenomatous polyposis coli (Apc) and has been 
designated the polyposis in the rat colon (Pirc) kindred, which can develop spontaneous 
intestinal lesions starting at the 45 days of age which then eventually expand to the colon and 
rectum [29]. This model has been widely used in longitudinal analysis of colorectal tumor 
biology, chemoprevention, microbiome effects, chemotherapy, and early detection. 

2.3 Multimodal OCT and NIR fluorescence imaging system 

Figure 1(a) shows the schematic of the integrated multimodal OCT and NIR fluorescence 
imaging system. A wavelength division multiplexer (WDM) and a double clad fiber (DCF) 
are utilized to fully integrate OCT and NIR fluorescence together. Figure 1(b) shows a 
micromotor-based imaging probe, which is able to perform stable and fast 3D scanning. The 
system setup and probe design have been described previously [30]. In comparison to our 
previous design, the outer diameter of the imaging probe has been reduced to 1.6 mm to 
readily access the colon. In addition, an upgraded micromotor and correction algorithm were 
applied to provide a stable cross-sectional OCT/NIR fluorescence images. All the software 
was written entirely in C + + utilizing the graphics processing unit, which allows fast data 
processing and real-time display during the rat imaging. 

 

Fig. 1. (a) Overall design of endoscopic multimodality OCT and NIR fluorescence system. (b) 
Multimodality imaging probe. WDM: wavelength division multiplexer. PMT: photomultiplier 
tube. DCF coupler: double clad fiber coupler. OCT: optical coherence tomography. CW: 
continuous wavelength. GRIN: gradient index. 

2.4 Imaging protocol 

The male rats with a certified report were purchased from Rat Resource & Research Center. 
The rats were kept on a normal diet upon arrival and were imaged at weeks 1 (after 1 week of 
acclimatization), 4, and 8 to track the development of the colorectal tumor. To anesthetize the 
rat for the imaging procedure, the rat was first placed in a hermetically sealed plexiglass 
chamber for general anesthesia induction and was then removed from the chamber for an 
intraperitoneal injection of a ketamine-xylazine mixture (87 mg/kg and 10mg/kg, 
respectively). After the rat was anesthetized, an enema was performed to remove fecal matter 
from the rectum. Then, a plastic tube was inserted to inflate the rectum. After gently warming 
the rat tail, ICG (1.5mg/kg) was then administrated intravenously through either of the lateral 
tail veins, followed by immediate imaging in consideration of the fast-hepatic uptake and the 
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Fig. 9. Adenocarcinoma. (a) The combined OCT and NIR fluorescence image. (b) Enlarged 
view of the dashed box in (a). (c) Histology. 

4. Conclusion 
While OCT and NIR fluorescence imaging each can individually provide clinically valuable 
information to supplement conventional white-light colonoscopy, combining these two 
imaging modalities further enhances the practicality of this dual-modality system. 
Colonoscopy allows viewing of the colorectal surface morphology and is intuitive for the 
surgeon, but because of lower sensitivity and specificity it cannot access information from 
subsurface tissue layers. With the multimodal imaging system, NIR fluorescence imaging can 
be used to identify the suspect lesions rapidly, and OCT endoscopy helps visualize the 
microanatomy of the subsurface layer structures with microscopic detail for further diagnosis, 
allowing better staging and diagnosis of GI tract disorders. 

With histological confirmation, our results demonstrated the capability of the multimodal 
imaging system to identify and differentiate healthy tissue, hyperplastic polyps, adenomatous 
polyps, and adenocarcinoma. In NIR fluorescence images, the contrast is from vascular 
network. The vascular density gradually increases, and vascular morphology becomes more 
tortuous with disease progression. In OCT images, tissue layered architecture alters as the 
disease progresses. We observed that different types of polyps exhibit unique patterns, which 
can be used for differentiating polyps. In healthy colorectal wall, well-defined layers can be 
visualized: the intensity of each layer is uniform, and boundaries are well-demarcated. In 
hyperplastic polyps, mucosal thickening is observed, and the OCT signal intensity of the 
thickened mucosa is similar to the neighboring healthy tissue. In adenomatous polyps, 
mucosal thickening is also visualized, but the OCT signal intensity is reduced in contrast with 
the surrounding normal tissue due to lowered light scattering. For the adenocarcinoma, 
boundaries are blurred and intensity of OCT images are non-uniform (e.g., the uneven dark 
areas in Fig. 9). 

The endoscopic multimodal imaging is minimally invasive and can be performed in real 
time. With its small size (probe outer diameter < 3 mm), the multimodal imaging probe can 
access the colon through the accessory channel of a commercial endoscope. This approach 
can be easily integrated into clinical practice as surgeons can still rely on intuitive 
colonoscopy guidance but also gain additional subsurface information provided by the 
multimodal imaging system. Such integration can help differentiate polyps observed by 
colonoscopy to provide a better diagnostic yield. 

Future studies will focus on determining sensitivity and specificity of the proposed 
multimodal imaging system with respect to colorectal cancer. A larger sample size will be 
proposed for quantitative analysis. Additionally, it is also possible to utilize autofluorescence 
rather than NIR fluorescence, which can eliminate the need of a contrast agent, further 
reducing the invasiveness of our multimodal approach. 
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